

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

uarray - Universal Array Interface

[image: _images/uarray.svg]Join the chat at https://gitter.im/Plures/uarray [https://gitter.im/Plures/uarray?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge]

	Future Meetings [https://calendar.google.com/calendar/embed?src=quansight.com_cg7sf4usbcn18gdhdb3l2c6v1g%40group.calendar.google.com&ctz=America%2FNew_York]

	Meeting Notes [https://github.com/Quansight-Labs/uarray/wiki/Meeting-Notes]

	Use Cases [https://github.com/Quansight-Labs/uarray/wiki/Use-Cases]

	References [https://github.com/Quansight-Labs/uarray/wiki/References]

Background

NumPy has become very popular as an array object — but it implements
a very specific “kind” of array which is sometimes called a fancy
pointer to strided memory. This model is quite popular and has allowed
SciPy and many other tools to be built by linking to existing code.

Over the past decade, newer hardware including GPUs and FPGA, newer
software systems (including JIT compilers and code-generation systems)
have become popular. Also new “kinds” of arrays have been created or
contemplated including distributed arrays, sparse arrays, “unevaluated
arrays”, “compressed-storage” arrays, and so forth. Quite often, the
downstream packages and algorithms that use these arrays don’t need
the implementation details of the array. They just need a set of basic
operations to work (the interface).

The goal of uarray is to constract an interface to a general array
concept and build a high-level multiple-dispatch mechanism to
re-direct function calls whose implementations are dependent on the
specific kind of array. The desire is for down-stream libraries to be
able to use/expect uarray objects based on the interface and then have
their implementation configurable. On-going discussions are happening
on the NumPy mailing list in order to retro-fit NumPy as this array
interface. uarray is an alternative approach with different
contraints and benefits.

Python array computing needs multiple-dispatch. Ufuncs are
fundamentally multiple-dispatch systems, but only at the lowest level.
It is time to raise the visibility of this into Python. This effort
differs from XND [https://xnd.io/] in that XND is low-level and
cross-langauge. The uarray is “high-level” and Python only. The
concepts could be applied to other languages but we do not try to
solve that problem with this library. XND can be used by some
implementations of the uarray concept.

Our desire with uarray is to build a useful array interface for Python
that can help library writers write to a standard interface while
allowing backend implementers to innovate in performance. This effort
is being incubated at Quansight Labs which is an R&D group inside of
Quansight that hires developers, community/product managers, and
tech-writers to build and maintain shared open-source infrastructure.
It is funded by donations and grants. The efforts are highly
experimental at this stage and we are looking for funding for the
effort in order to make better progress.

symarray - Symbolic Array

symarray is a packages that facilitates creating verbatim array
expressions from Python native expressions.

Use cases:

	The verbatim array expressions can be optimized using tools like
uarray and evaluated using different array backends such as numpy,
xnd, etc.

Definitions:

	An array is a mapping of indices to items.

	Array items are arbitrary objects (scalars, arrays, structures, etc)
that are stored in memory at specific locations.

	The storage locations of items are represented as single integers
called pointers.

	Array items have types. Item type carries information how to
interpret the item value in different operations as well as how much
memory-width is needed to store a particular item value.

	Array shape is a structure that defines a mapping between array
indices and pointer values, call it index-pointer mapping or gamma
function.

Practicalities:

	An array index is represented as a sequence of integers.

	The origin of pointer values is arbitrary. Pointer value may be a
memory address, or it may be an integer offset from some fixed base
value.

	Array items can be assumed to have fixed memory-width, in
general. If this would not be a case, for instance, in the case of
arrays containing items having different memory-widths, then one can
construct an array of pointers (all pointers have the same
memory-width) that values are offsets to the actual locations of the
array items.

An array expression consists of the following objects and operations:

	Array - represents an array with given shape, a scalar is defined as
an array with empty shape.

	element-wise operations: + - * / ** // %

	indexing operations: indexing, slicing, etc.

	reordering operations: advanced indexing, transpose, rotate, etc.

	reduce operations: inner product, sum along given axis, etc.

	tensor operations: outer product, outer sum, etc.

Notes:

	When array shapes differ in element-wise operations then the
validity of the expression is defined by broadcasting rules that are
to be applied before evaluating element-wise operations.

	Broadcasting produces new array shape that has many-to-one
index-pointer mapping.

	Element-wise operations produce new arrays that require memory
allocation (and processing resources).

	Indexing operations produce new array shapes w/o requiring memory
allocations.

	Reordering operations either produce new arrays or add parameters to
array shapes.

	Reduce and tensor operations produce new arrays that require memory
allocation. In reduce and tensor operations the memory footprint is
smaller and larger, respecitvely, than the memory footprint of the
operands.

Target:

N = Symbol('N')
M = Symbol('M')
k = Symbol('k')
m = Symbol('m')
a = Array('a', shape=NDShape((N, M)))
b = a + 2
expr = a[k].inner(a[m].outer(b[0])[n])

Current state:

>>> from symarray import NDShape, Integer
>>> n1 = Integer('n1')
>>> n2 = Integer('n2')
>>> n3 = Integer('n3')
>>>
>>> # Shape of a 3-dimensional array
>>> s3 = NDShape((n1, n2, n3), offset=2000, itemsize=8)
>>> print(s3)
NDShape(dims=(n1, n2, n3), strides=(n1 * n2, n2, 1), offset=2000, itemsize=8)
>>>
>>> # Get the pointer the value of array item with index (i1,i2,i3) --- the gamma function:
>>> i1 = Integer('i1')
>>> i2 = Integer('i2')
>>> i3 = Integer('i3')
>>> p = s3(i1,i2,i3)
>>> print(p)
2000 + 8 * i1 * n1 * n2 + 8 * i2 * n2 + 8 * i3
>>>
>>> # The shape of a subarray
>>> j1 = Integer('j1')
>>> j2 = Integer('j2')
>>> j3 = Integer('j3')
>>> s2 = s3[i1,:,i3:j3]
>>> print(s2)
NDShape(dims=(n2, -i3 + j3), strides=(n2, 1), offset=2000 + 8 * i1 * n1 * n2 + 8 * i3, itemsize=8)
>>>

uarray

[image: ../_images/badge.svg]Binder [https://mybinder.org/v2/gh/Quansight-Labs/uarray/master?urlpath=lab/tree/uarray/NumPy%20Compat.ipynb]

[image: https://dev.azure.com/teoliphant/teoliphant/_apis/build/status/Quansight-Labs.uarray]Build Status [https://dev.azure.com/teoliphant/teoliphant/_build/latest?definitionId=1]

[image: ../_images/uarray1.svg]PyPI [https://pypi.org/project/uarray/]

pip install uarray

We currently have some E2E examples of this working (see Numpy Compat.ipynb). We are working in a couple of directions simultaneously:

	Adding Mathematics of Array operators (./uarray/moa.py) and mapping them to the NumPy frontend (./uarray/lazy_ndarray).

	Adding new backends (including at least one lower level one)

	improving NumPy AST backend (./uarray/ast.py)

	Investigating changes to the core machinery (./uarray/machinery.py, ./uarray/core.py) to make clear distinctions between the parts of the project and make it more “safe” (verifiability)

	Start adding examples of stand alone libraries that support NumPy / SciPy functions and dispatch to different backends (creating uarray.linalg, uarray.stats)

Development

The code relies on Python 3.6+ and matchpy. Besides that, we use NumPy to define some
interop code and also rely on JupyterLab and the like for development. To get a nice
package of what you need, feel free to use the included environment.yml.

conda create -n uarray python=3.6
conda activate uarray
pip install -r requirements.dev.txt

This code hasn’t been published yet on PyPi or Conda.

Testing

mypy uarray
python extract_readme_tests.py
py.test

To re-run notebooks (their outputs are checked in the tests):

jupyter nbconvert --to notebook --inplace --execute NumPy\ Compat.ipynb Transpose\ Test.ipynb NumPy\ Broadcasting.ipynb

Internals

Unlike other libraries I have worked on in Python, much of the design of uarray has been focused on the
internal representations instead of the user facing interfaces. From a users perspective, most of these details
are hidden. If you use the optimize decorator or even the lower level LazyNDArray wrapper, you get back some Python function
you can call that should do what you want and should be fast or efficient in some way. But that isn’t actually the interesting or powerful
part of the system. Instead, it’s meant to give a framework where users can easily add to the core working internals and the actually
“core” of the system is very minimal. Why this approach? To allow faster iteration as things evolve, without having to rewrite everthing.
I.e. to be able to support a wide array of paradigms of input and output.

So in this section, I want to give an overview of internals of uarray in an attempt to make it extendable by others. I will try to bold
any tips that can help avoid subtle errors. Eventually, it would be nice if some these tips were all verified as you develop automatically.

MatchPy: uarray/machinery.py

Fundamentally, uarray is just a set of patterns on top of the MatchPy [https://github.com/HPAC/matchpy] pattern matching system in Python.

We start with the matchpy.Expression class. Most of uarray is subclasses of either matchpy.Symbol or matchpy.Operation, both of which
are subclasses of matchpy.Expression. Every Symbol subclasses contain a name which is a Python object. They are the leaves of the expression tree.
Whereas each Operation subclass is initialized with a number of other Expressionss. These are stored on the operands attribute of the instance.

TODO: Make uarray.Int use just name

Here is an example of creating a recursive list in matchpy:

import matchpy

class Int(matchpy.Symbol):
 pass

class Nil(matchpy.Operation):
 name = "Nil"
 arity = matchpy.Arity(0, True)

class Cons(matchpy.Operation):
 """
 Cons(value, list)
 """
 name = "Cons"
 arity = matchpy.Arity(2, True)

class List(matchpy.Operation):
 """
 List(*values)
 """
 name = "List"
 arity = matchpy.Arity(0, False)

nil_list = Nil()
assert not nil_list.operands

v = Int(1)
assert v.name == 1

a = Cons(v, Nil())
assert a.operands == [v, Nil()]

b = List(v)
assert b.operands == [v]

Then in uarray we define one global matchpy.ManyToOneReplacer that holds a bunch of replacement rules, to take some expression tree and replace it with another.
We define a helper register function that takes in an expression to match, some custom contraints, and the replacement function.

We also define two objects, w and ws that return matchpy.Wildcard [https://matchpy.readthedocs.io/en/latest/api/matchpy.expressions.expressions.html#matchpy.expressions.expressions.Wildcard]s.
If you get an attribute from them, it returns a wildcard with that name. This is a way to extract out some part of the matched pattern and pass it into
the function so that you can use it to return a new pattern. The difference between the two is that w creates wildcard that match one and only
one expression, while ws matches wildcards that return 0 or more expression. They are like . and .* in regex land.

Let’s show how this works in this example, by adding a rule to turn Lists expression into nested Cons expressions:

import uarray

base case
uarray.register(List(), lambda: Nil())
uarray.register(List(uarray.w("x"), uarray.ws("xs")), lambda x, xs: Cons(x, List(*xs)))

To use the global replacer on an expression, we provide the replace function. It takes in some expression and keep applying replacement rules
that match (in arbitrary order) until it cannot find any more to replace.

Two things to note about this. If two replacement rules could match the same expression, then which one is executed is not fixed. Therefore,
there should not be multiple replacement rules registered that could match the same pattern. If there are, you might get non deterministic compilation.
The other thing is that replacement rules are fundementally one way. They are not equivalencies. So it becomes helpful to think about
what are the types of expressions I have when I start and what are the types of expression I have when everything has been replaced.
In this case, we start with higher level List forms and end up with lower level nested Cons forms.

Let’s see this in action:

assert uarray.replace(List()) == Nil()
assert uarray.replace(b) == a

Since each replacement happens in a sequence, it is often helpful to look at not just the final replaced form, but all the intermediate forms as well.
For that, we provide the replace_scan, which returns an iterable of all the replacements. This can also be helpful to use to debug infintely replacing forms,
because it is lazily evaluted.

assert list(uarray.replace_scan(List())) == [List(), Nil()]
assert list(uarray.replace_scan(b)) == [List(v), Cons(v, List()), Cons(v, Nil())]

One interesting thing to note here is that as the expression moves from what the user enters (List(x, ...))
to the final form (Cons(a, Cons(...))) we move through intermediate forms that have both types of expressions.
So it’s also helpful to not only think about what kinds of forms should we start with and what kinds should we end with,
but making sure that the expression still has a meaningful form as it progresses. This helps reasonsing about
intermediate forms to make sure they are “correct” in the sense that they express what you want them to. Otherwise, it
can be hard to diagnose where things go wrong and reason about the state.

There is one last note about our use of Matchpy. When you construct any form in MatchPy, you can also provide a variable_name for it.
Then you can use the matchpy.substitute function to replace any values with that variable_name with another expression. For example:

v_p = Int(None, variable_name="A")
assert matchpy.substitute(Cons(v_p, Nil()), {"A": Int(1)}) == Cons(Int(1), Nil())

Arrays (and contents and callables): uarray/core.py

TODO: Look at other names for contents and callables. Content could become Int, if we change Int
as it is to just be typed versions of itself. aka have Integer and String but not base Int symbol.

There are many ways we could implement the concept of a multi dimensional array in MatchPy.
We are interested in ways to do this that will let us express take high level descriptions of array operations,
like those present in Lenore Mullin’s these, A Mathematics of Arrays (MoA), and replace them with simpler expressions.
That work treats arrays as having two things, a shape and a function to go from an index to a value.

Here we think about arrays as a Sequence(length, getitem), a Scalar(content), or any form that can be replaced into these forms.
Let’s start with an example, using these expressions, then we can get into the weeds of what this all means.

s = uarray.Scalar(uarray.Int(10))

assert uarray.replace(uarray.Content(s)) == uarray.Int(10)

We see that a Scalar just wraps some underlying thing, we call the contents. We can extract
out it out with the Content operator. Now let’s look at a Sequence:

class Always(matchpy.Operation):
 name = "Always"
 arity = matchpy.Arity(1, True)

a = uarray.Sequence(
 uarray.Int(5),
 Always(s)
)

assert uarray.replace(uarray.Length(a)) == uarray.Int(5)
assert uarray.replace(uarray.GetItem(a)) == Always(s)

Here we define a to be a sequence of length 5 that contains all scalars of value 10.
We can also understand this as a one dimensional array, like np.array([10, 10, 10, 10, 10]).

We see that a sequence has two items we can extract out, the GetItem
and the Length. But what is this Always operator? Well we just defined it.
The getitem part of the sequence should be a callable that takes in an index of type
contents and returns an array. So let’s make Always a callable that works like this:

uarray.register(uarray.CallUnary(Always(uarray.w("x")), uarray.w("idx")), lambda x, idx: x)

A callable is any expression that you can use uarray.CallUnary on it as the first argument,
and it’s arguments as the rest of the arguments. It should replace this form into it’s result.
In this case, we have a simple Callable that takes one argument and just returns what is inside of it.
i.e. it doesn’t matter what it is called with, it always returns it’s first operand.

Now, we can get the callable from the array and call it on an index:

idx = uarray.Int(2)

indexed_a = uarray.CallUnary(
 uarray.GetItem(a),
 idx
)

assert uarray.replace(indexed_a) == s

This is how we index arrays in uarray. We extract out their callables and call them with the index. The Index function in Mathematics of Arrays (or in NumPy) allows you to index an array with a vector, just like how in NumPy you can index an array with a tuple of indices.

How does it work? If you look at it’s defintion in uarray/moa.py you will see it uses this pattern above once for each index in the vector.

A mistake I often make is giving an expression of the wrong type to some expression.
For example, what if I defined an array like this:

uarray.Sequence(uarray.Scalar(uarray.Int(10)), Always(uarray.Scalar(10)))

Can you spot what is wrong? The length of the sequence is an Array not a contents!
So this should instead be:

uarray.Sequence(uarray.Int(10), Always(uarray.Scalar(10)))

What do I mean “should”? Will this give an error? An exception? Most likely it will not.
You will just end up with some long expression down the line that cannot be reduced
because it has the wrong type inside. It’s like casting a pointer to another type in C
and then reading in the values. It won’t error when you cast the pointer, but the contents
of it doesn’t have the write structure to be meaningful.

The moral is
always understand what types of expressions your expression takes and don’t pass those of another class.

TODO: Enforce this somehow. We could possibly use python types to define these different
classes and have each expression subclass subclass also from this Python type. This could
get static type checking (possibly). But it comes at the expense of introducing a Python
type hierarchy where we don’t really need one, just for MyPy.

Callables

You might have a lot of questions about callables at this point. Let’s show a few
more examples of built in callables, and then we can get into the nitty gritty of why
they are implemented like they are.

First, let’s look at the Function(body, *arg_names) callable. This let’s you define the body of the function
with the arguments as Unbound values with their variable_name set. To “execute”/”call”
the Function callable, we just replace those values with their arguments:

arg = uarray.unbound("some_unique_value")
squared = uarray.UnaryFunction(uarray.Multiply(arg, arg), arg)
v = uarray.Int(5)
called = uarray.CallUnary(squared, v)

assert uarray.replace(called) == uarray.Int(25)
assert list(uarray.replace_scan(called)) == [
 called,
 uarray.Multiply(v, v),
 uarray.Int(25)
]

Function takes in the argument names as the rest of the args after the body.
When it is called, each argument is matched to it’s name and the matchpy.substitute function
(which we talked about in the first section) is used to replace the args with their values in the body. You can see the full replacement rule for how this executes in uarray/core.py.

Another example is the VectorCallable(*items) which takes in an index “i” and returns the “i”th arg:

TODO: change vector callable to not wrap in scalar

c = uarray.VectorCallable(uarray.Int(5), uarray.Int(10))
assert uarray.replace(uarray.CallUnary(c, uarray.Int(0))) == uarray.Int(5)
assert uarray.replace(uarray.CallUnary(c, uarray.Int(1))) == uarray.Int(10)

In the next section, we will also see how callables are used for compiling to
the Python AST.

But why have callables? It started with just having a getitem and needing an
operation to evaluate that getitem with an index to return the sub array. Then
I also needed a way when applying a reduction or broadcasting binary operators
to hold onto the underlying operation and then apply it later on. At first,
these things were all distinct operators. I also was just holding onto
Python language callables, like lambdas or classes, inside of a Symbol
and then executing that when I needed to see the result.

However, if we use Python callable, then we can’t “see inside” of the body.
So if we translate this later to some backend, we have to inspect the Python code/class
to see how we translate it. Seems like extra wasted work when we are already have
a way to hold these things in an introspectable and reducable form, as matchpy expressions.
And, if we keep the expressions as MatchPy forms, then they can be reduced, even before they are called.

So why not just have everthing be a Function instead of introducing other callables? Well it allows
us to move some of the application logic into Python land instead of keeping it generic. For example,
we could define VectorCallable to be a Function, but it would require basically a big pattern
matching statement of like “if index == 0, then return this value, elif equal to 1 return this value”.

We could implement this all with matchpy operations, but it just requires a lot of extra work, extra forms, and for what gain? Well the gain would be we could then translate this lower level form to a backend without a concept of a VectorCallable, just with a concept of if, else.

The other side of this added flexibity is the ability to “overload” any matchpy expression to make it
callable. How? Well you just define a call replacement for it and then it’s callable. We will use
this to our advantage in the Python AST creation.

Another option would be to express all functions in a fixed point form, with composition and other operators like that. This might be helpful in the end, to move from Function to this type of thing.
See Compiling to Categories [http://conal.net/papers/compiling-to-categories/] for one explenation
of this type of transformation.

Mathematics of Arrays: array/moa.py

We are implementing Mathematics of Arrays on top of the abstractions we have defined above. In particular,
we decide to have every MoA operation take in and return Arrays. Some higher order operators also
take in callables. The MoA definitions, like those in Lenore’s thesis, cannot be translated directly
to this form, because they are often defined as equivalencies on indexing, where as we are defining
things as indeixng on each dimension. Some definitions are easier this way (OuterProduct), some are
harder (Shape, Index). One advantage of doing things this way is we are explicit about all the
partial forms as something is indexed. For example, Index(<i>, OuterProduct(A, B)) can be reduced,
even if the index does not fully index the result. This is why some definitions are harder, because
we have to think about how the operation is transformed it is partially indexed, instead of thinking
as the index coming in as a full form. For example, Transpose is much more complicated, but at the
same time we can partially index a transformed value and this get’s reduced.

Building Python AST (uarray/ast.py)

So up to this point, we have just been concerned with expressing arrays and transforming array expressions.
Now we will look at an exmaple of taking some array expression and turning it into a form we can execute
without matchpy. We build up a Python AST using the ast [https://docs.python.org/3/library/ast.html]
core module, where we want to take in and emit NumPy arrays. We could extend this later on to also be able to
emit Python lists, either nested ones, or a flat one in row major form.

First, let’s start with the context of this transformation. We
would like to generate some Python AST that is compiled into a
python function that takes some number of numpy arrays as arguments
and returns one.

For our example, let’s consider adding two vectors. Our generated code
should look something like this:

import numpy as np

def fn(a, b):
 length = a.shape[0]
 res = np.empty((length,))
 for i in range(length):
 res[i] = a[i] + b[i]
 return res

a = np.arange(10, dtype="float64")
assert np.array_equal(fn(a, a), 2 * a)

How would we create this? Let’s start with a very manual approach and then
we can show how this can be abstracted properly.

I like to think about this step of the process proceeding in two ways, top down or bottom up.
Starting at the bottom, we can begin with what should be at the leaves of this array expression.
i.e. in the end, where are we indexing into to compute on? Well, if we are generating a function,
then we are indexing into two variables a and b:

import ast

a_expr = uarray.Expression(ast.Name("a", ast.Load()))
b_expr = uarray.Expression(ast.Name("b", ast.Load()))

a = uarray.NPArray(a_expr)
b = uarray.NPArray(b_expr)

Reference

Here we list the categories we are dealing with and then some functors.

We use Python type annotations for the functors, but with catgories as C/<name>
to make it clear they don’t exist as Python types.

A functor goes from one or more categories to one or more other categories.

	Categories (these don’t exist in the code):

	C/Array

	Some functors only defined on subcategories of Sequence and Scalar

	C/Content

	C/Callable[arg_cats, ret_cats]

	generic category where you need to specify categories of arguments and return values, below are a list of sub-categories with those arg types specified

	C/Getitem = C/Callable[(C/Content,), (C/Array,)]

	C/Initializer = C/Callable[(Identifier), (Statement, …)]

	Note: This callable goes from a python identifier to a number of statemnts to fill in that id

	C/Statement

	C/Initializable

	C/NPArray is both C/Initializer and C/Array

	C/PythonContent is both C/Initializer and C/Content

	Primary Functors (these define the categories/serve as their axioms):

	GetItem(a: C/Array) -> C/Getitem

	Partially defined, only on sequences

	Length(a: C/Array) -> C/Content

	Partially defined, only on sequences

	Content(a: C/Array) -> C/Content

	Partially defined, only on scalars

	Call(fn: Callable[arg_cats, ret_cats], *arg_cats) -> *ret_cats

	Initializer(init: C/Initializable) -> C/Initializer

	Operation Constructor functors

	Sequence(length: C/Content, getitem: C/GetItem) -> C/Array

	Scalar(content: C/Content) -> C/Array

	NPArray(init: C/Initializer) -> C/NPArray

	ToNPArray(a: C/Array, should_allocate: ShouldAllocate) -> C/NPArray

	ToPythonContent(c: C/Content) -> C/PythonContent

	DefineFunction(ret: Initializable, *args: Identifier) -> C/Initializer

	Symbol contructor functors (these take in Python values as arguments)

	Int(value: Any) -> C/Content

	Expression(name: str) -> C/Initializer

	SubstituteStatements(fn: typing.Callable[[ast.AST, …], C/Initializer, …])
-> C/Callable[(Statement, …), C/Initializer, …]

	SubstituteIdentifier(fn: typing.Callable[[Identifer], C/Initializer, …])
-> C/Initializer

Conclusions

This is a large system and on the face of it seems rather convulated. Some of this comes out
of the ambiguity of the answer to “What is an array?”

Sometimes, we know if any array is a scalar of it is not. In that case, we can apply the Mathematics
of Array definitions of operations to

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

